If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7t^2+20t-140=0
a = 7; b = 20; c = -140;
Δ = b2-4ac
Δ = 202-4·7·(-140)
Δ = 4320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4320}=\sqrt{144*30}=\sqrt{144}*\sqrt{30}=12\sqrt{30}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-12\sqrt{30}}{2*7}=\frac{-20-12\sqrt{30}}{14} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+12\sqrt{30}}{2*7}=\frac{-20+12\sqrt{30}}{14} $
| 7t^2+20t+140=0 | | 10+5r=30 | | -6(2x+8)=12x+17= | | 8/x-1=2 | | x-2.8÷5=4.6 | | 5x+3x+20=-12 | | 9(3x-1)-(4-x)=2(4-7x) | | 10/10=x/8 | | 5x+3x+20=12 | | 100=30x | | 7X*x=175 | | a²-18a+72=0 | | 7(7g+6)/4=35 | | 11d+6=5d+12 | | 3n=n=7 | | S(t)=80t–16t² | | 3(x-2)=-0.6 | | 5.5=5c-3 | | 7e-9=18.3 | | 2y=+10 | | 9(a+7)=108 | | 3,5-2y=O | | 3,5+2y=0 | | 8x/8=3/2/8 | | 3,5-2y=0 | | -1=5x-11 | | 7+9x=151 | | x(4x)=20 | | 2(t+3)=3t—8/2 | | (4/x+3)+(3/x-2)=1 | | x+(x*5/100)=180 | | 3^3y=1/27 |